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Lattice and continuum theories of Huang scattering
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Abstract. The predicted x-ray and neutron scattering by random semiconductor alloys A1−xBxC
with the zinc-blende structure has been analysed using direct simulation of the scattering from the
atoms in the lattice, and also using a continuum theory. This initial work focuses on thespecial
case of the single-impurity limit (small concentrationx) where the elastic properties of both of the
pure crystals (x = 0 andx = 1) areisotropic and the same. The influence of different atomic
scattering amplitudes on the intensity has also been analysed. Distortions occur in the crystal
caused by the size mismatch of the impurity atoms, which results in diffuse scattering of which the
most important component is theHuangscattering around the Bragg peaks. The Huang scattering
has the shape of adouble dropand we obtain surprisingly good agreement between the continuum
and lattice approaches. This is because long-wavelength concentration waves make the dominant
contribution to the divergent Huang scattering, with the remainder of the diffuse scattering being
very weak. We have also analysed the influence of elastic anisotropy on the diffuse scattering.

1. Introduction

The theory of diffuse scattering from random alloys was developed many years ago. After the
very important early work of Huang [1], a rather complete theory of the diffuse scattering from
alloys was developed by Krivoglaz and co-workers [2–4] in the Ukraine. This pioneering work
contains most of the formalism necessary to understand diffuse scattering in the continuum
limit. An English translation of this work is now available and is highly recommended to
the interested reader [3]. Of particular interest to us in this paper is the diffuse scattering in
a semiconductor caused by a single impurity due to the lattice strain and the associated size
mismatch between the impurity and the host.

Modern simulation techniques on lattices allow the individual atomic displacements to
be found and hence the associated diffuse x-ray or neutron scattering to be calculated. A
crystalline alloy has a mean long-range order that leads to Bragg peaks, and the associated
Huang scattering [1] is divergent very close to these Bragg peaks. In this paper we compare
the lattice and continuum approaches and find that the continuum approach is remarkably good
in all cases. This was anticipated near the Bragg peaks, but in fact the continuum is found
to be a good approximation everywhere in the case of small defect concentration. This is
because the lattice structure only becomes important at short wavelengths where the diffuse
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scattering is very weak anyway. Nevertheless the excellence of the continuum approximation
was somewhat of a surprise to us.

In this paper, we first describe the lattice simulations. We look only at the special case of
semiconductors with a single defect, where the elastic constants of the host and the defect are
isotropic and the same. This is accomplished by using a Kirkwood model [5]. In section 3, we
review the continuum approximation for a single defect. In section 4, we compare results for
the displacement field around the single defect, and in section 5, we compare the results for the
diffuse scattering, using a variety of graphical representations. We analyse diffuse scattering
for ananisotropicmatrix in section 6. We end with a brief discussion.

Throughout this paper we consider only a single defect in a zinc-blende structure. This is
the limit at a small concentrationx of the alloy A1−xBxC. We use masses that correspond to the
alloy Ga1−x InxAs, and force constants in a Kirkwood model, which contains bond-stretching
and angle-bending terms, where the force constants are chosen to give the elastic constants
of GaAs. This is an initial study, where we have simplified everything, except for the size
mismatch between the Ga and In ions which is the crucial ingredient.

2. Lattice simulations

The zinc-blende structure contains two sublattices, each with a face-centred cubic structure.
A single impurity is placed in one of these sublattices and the subsequent lattice relaxation
and associated diffuse scattering is studied. The direct simulation of the scattering from the
atoms in the lattice was based on a numerical procedure [6] which adjusts the positions of all
atoms and the size of the cubic supercell to minimize the energy for an alloy A1−xBxC. The
size mismatch was described with a Kirkwood potential [5] following the scheme of Thorpe
and co-workers [6–9] for an A1−xBxC semiconductor alloy. The lattice contains two kinds of
bond between atoms from the two sublattices, the second sublattice being always occupied by
C atoms. The distorted equilibrium structure is obtained by minimizing the energy associated
with the Kirkwood potential [5]:

V = α

2

∑
〈ij〉

(Lij − L0
ij )

2 +
β

8
L2
e

∑
〈ijk〉

(cosθijk + 1
3)

2. (1)

HereLij is the length of the bondij andL0
ij is the natural (unstrained) bond lengthL0

ij , which
can take on the valuesL0

AC,L0
BC with probability 1− x andx respectively. The change of this

(a) (b)

Figure 1. (a) A sketch of the tetrahedron surrounding the impurity atom in the zinc-blende structure
and (b) the radial displacement field around the atom as obtained from the continuum theory.
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bond length is related to the stretching force constantα. The angleθijk is the variable associated
with the tetrahedral angle which has a natural (i.e. unstrained) value of cos−1(−1/3) = 109◦.
The indicesj, k are nearest neighbours to the central atomi as shown in figure 1(a). The
change of the angleθijk is controlled by the bending force constantβ. The mean bond length
isLe and is given in equation (5), below.

In a first-order approximation, consistent with using a harmonic potential (1), the bond
length can be written as

Lij = Le + r̂ij · Euij (2)

where Le is the nearest-neighbour distance of the undistorted virtual crystal,Eui is the
displacement of sitei from its position in the undistorted structure, andEuij = Euj−Eui . The unit
vectorr̂ij joins sitesi, j in the undistorted structure. We will take all of the spring constants to
be equal in this paper as it simplifies the analytical treatment [9], and choose the ratioβ/α to
correspond toisotropicelastic constants (which does not qualitatively influence the results).
The isotropy conditionc11 − c12 = 2c44 for the elastic constants is imposed with the result
that the following relations between the elastic moduli and the force constants [9]

c11 = 1

3a

(
α + 3β − λ

3
β

)
and c12 = 1

3a

(
α − β − λ

3
β

)
(3)

reduce toα = 16β/9 for the Kirkwood model whereλ = 1 [5] (λ = 0 for the Keating model
[10], which we do not use here). For isotropic elastic moduli in crystalline Ga1−x InxAs, we
used the following values of the force constants:α = 49.138 N m−1; β = 27.64 N m−1,
leading to the elastic modulic11 = 7.2432 dyn cm−2 with c12 = c11/10, and hence the Poisson
ratioν = 2c12/c11 = 0.2. The unstrained length of the GaAs bond isa2 = 2.4479 Å and that
of the InAs bond isa1 = 2.6233 Å. The mismatch in length of the InAs bond compared with
the GaAs bond is about 7%.

The scattering intensity was computed from the relaxed coordinates using the exp-
ression [11]

I ( EQ) =
∣∣∣∣∣∑
i

fi exp(i EQ · ERi)
∣∣∣∣∣
2

(4)

whereI ( EQ) is the total scattering intensity, andEQ is the diffraction vector,EQ = Ek1− Ek0. The
wavevectorsEk1 andEk0 are associated with the scattered and incident beams, respectively, with
|Ek1| = |Ek0| = 2π/λ, whereλ is the x-ray or neutron wavelength. We also will use the quantity
Eq = EQ− EG to describe the scattering around a single reciprocal-lattice vectorEG. The factor
fi is the strength of the scattering from an individual atomi, and is the atomic form factor for
x-ray scattering (which is proportional to the atomic chargeZ at small wavevectorEQ) and the
neutron scattering length for neutron scattering.

For a direct computer simulation of the scattering intensity of random semiconductor
alloys with the zinc-blende structure, we used a supercell withL× L× L cubes of the zinc-
blende structure, each containing eight atoms, with periodic boundary conditions. A single
impurity atom was placed in this large supercell. Different supercell sizes were tested for direct
simulations over the lattice to evaluate the influence of the size of the supercell on the accuracy
of the calculation of the displacement field and diffuse scattering intensity, and in order to
obtain a denser mesh of points for the calculation of the diffuse scattering. The simulation
program, which used a variant of the conjugate gradient method [6], adjusted the positions of
all atoms at a given size of the supercell to minimize the energy. The simulation was terminated
when the strain energy did not change within ten significant digits. It was found thatL = 40,
which corresponds to 512 000 atoms in the supercell, was large enough, and this value is used



3078 R I Barabash et al

throughout this paper. The supercell was kept strictly cubic and its size scaled by the mean
bond length as required by Vegard’s law, which is known to hold strictly for the conditions
here (no force constant disorder [9]). The mean bond length [9] is given by Vegard’s law [12]

Le = (1− x)L0
AC + xL0

BC. (5)

Although the defect concentrationx = 1/256 000 is very small in this calculation, it is
important to make this adjustment to the sample size, using (5), as the diffuse scattering is only
meaningful at the superlattice points in reciprocal space associated with the supercell, and we
found that it was important to beexactlyat these points. Note that we use the full expression (4)
for the scattered intensity with these lattice calculations and make no assumptions about small
displacements and expanding the expression (4) as is done in the continuum theory.

3. Continuum theory

The continuum theory of diffuse scattering from isolated defects [2–5, 13–16] gives a detailed
analysis of isodiffuse surfaces in the vicinity of reciprocal-lattice sites for cubic crystals. This
theory has been worked out for a wide variety of geometries and defect types and is summarized
in a recent book [3]. We will present here a simple derivation of the isotropic case of interest
to us in this paper.

Consider an elastic sphere with radiusR1, subject to an external hydrostatic pressureP1.
The displacementEu1 is only in the radial direction inside the sphere, is linear inr, and can be
easily calculated using continuum mechanics [17] as

Eu1 = − P1

3K
Er (6)

whereK is the bulk modulus of the material. We now consider theinversesituation, of an
infinite elastic continuum, containing a spherical hole of sizeR2, with an inside hydrostatic
pressureP2. In this case the displacement fieldEu2 is also radial and is given by an inverse
square behaviour with distance

Eu2 = P2R
3
2

2µr2
r̂ (7)

wherer̂ is a unit vector alongEr. We assume thatR1 > R2, and put thelarger sphereinside
thesmaller spherical hole. The boundary conditions are that the pressure is continuous and
the radial displacement field is continuous. These two conditions lead to the pressure at the
boundary:

P = P1 = P2 = R1− R2

R2/4µ +R1/3K
. (8)

Of most interest to us here is how the displacement field falls off outside the impurity, and this
is given by

Eu2 = R1− R2

R2/4µ +R1/3K

R3
2

2µr2
r̂ . (9)

Note that the bulk modulusK is associated with theinnermaterial and the shear modulus
µ with theoutermaterial, although here we do not make any distinction as the two materials
are assumed to be the same elastically. We can rewrite the result (9) in a more convenient form
if we use the fact that the difference1R = R1− R2 is small, and also use the Poisson ratioν
as given byK/µ = 2

3(1 + ν)/(1− 2ν) so that (9) becomes

Eu2 = 1R

3R

(
1 + ν

1− ν
)
R3

r2
r̂ = 1V

12πr2

(
1 + ν

1− ν
)
r̂ (10)
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which depends only on two parameters: the change in volume1V associated with the mis-
match, and the Poisson ratioν. A sketch of this displacement field around the impurity is
shown in figure 1(b), which shows the 1/r2 behaviour outside the sphere.

The scattering amplitude can be found from the Fourier transformEuEq of the displacement
field. We neglect the displacement fieldEu1 inside the sphere, and calculateEuEq as

EuEq =
∫
Eu2 exp(i Eq · Er) d3r/Va = i

1V

Va

q̂

q

(1 + ν)

3(1− ν) (11)

whereVa is the volume per atom (i.e. the volume of the sample divided by the total number
of atoms including both sublattices). The expression above is only meaningful for small
wavevectorsEq as we are in the continuum limit.

The expression for the scattered intensity (4) can be rewritten using the equilibrium
positions in the virtual crystalER0

i , where ERi = ER0
i + Eui , as

I ( EQ) =
∣∣∣∣f∑

i

exp(i EQ · ER0
i ) exp(i EQ · Eui)

∣∣∣∣2 = ∣∣∣∣f∑
i

exp(i EQ · ER0
i )[1 + i EQ · Eui ]

∣∣∣∣2
=
∣∣∣∣f∑

i

exp(i EQ · ER0
i )

∣∣∣∣2 + |f EQ · EuEq |2 = IB( EQ) + IH ( EQ) (12)

where we have set all of the amplitude factorsfi in equation (4) equal tof for simplicity. The
first term in (12) is the Bragg scatteringIB( EQ) associated with the virtual crystal and the second
term is the Huang scatteringIH ( EQ), where we have taken only the leading non-zero term in
(12) which is dominant. Note that the wavevectorEq is associated with each reciprocal-lattice
vector in turn viaEq = EQ − EG. Using equations (11) and (12), the Huang scattering in the
continuum limit is

IH ( EQ) =
[
f

(
1V

Va

)(
1 + ν

3(1− ν)
)( EQ · q̂

q

)]2

(13)

for a single defect. In the low-concentration limit, the scattering from isolated defects will be
additive, and so the above expression would just be multiplied by the number of defect atoms
to get the total scattering. Note that the first factor in (13) is the relative size change associated
with the impurity atom where1V/Va = 31R/R. Note also that this is the change in the
natural lengthassociated with the substitution of a host atom with an impurity and not the
actual length change, which in general will be smaller in magnitude, because of the restraining
effect of the rest of the lattice.

For a small concentration of defects in an elastically isotropic medium in the vicinity of
reciprocal-lattice sites, classic Huang scattering occurs as found by many previous authors
[2–4, 13–16] whose result we reproduce here:

IH ( EQ) = Nd |f |2e−2W

(
1

Vt

dVt
dx

)2( 1 + ν

3(1− ν)
)2
Q2 cos2 θ

q2
(14)

which is proportional to cos2 θ , whereθ is the angle betweenEQ and Eq. This results in the
appearance of strong Huang scattering aroundall reciprocal-lattice points having the shape of
a double drop. In expression (14),Nd is the number of defects andf is an average scattering
factor that has been put back. The Debye–Waller factor involvingW can be ignored for a
single defect as it is a 1/N effect, whereN is the total number of atoms. The quantityVt is
the total volume of the crystal and so using Vegard’s law (5), we see that equation (14) does
indeed reduce to (13) in the appropriate limit as expected, including the overall normalization.
We have found the simple calculation of Huang scattering given in this section instructive, and
perhaps simpler than some of the traditional calculations that have led to (14).
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In the case when all of the scattering factorsfi in (4) arenot all set equal, the separation
into Bragg and Huang scattering in (12) must be done with more care [2–4]. In particular
there are the strong Bragg peaks that we have been discussing, with their associated diffuse
scatteringID( EQ) given by

ID( EQ) =
[
(fA + fC)

2

(
1V

Va

)(
1 + ν

3(1− ν)
)( EQ · q̂

q

)
+ (fA − fB)

]2

(15)

where the diffuse scatteringID( EQ) becomes the Huang scatteringIH ( EQ) as given in (12) and
(13) when all of the atomic scattering factorsfi are set equal. In general the diffuse scattering
in (15) contains the divergent Huang amplitude and another non-divergent amplitude, which
increases the scattering slightly on one side of the peak and decreases it on the other.

WhenfA 6= fC additional Bragg peaks occur. These are the extra peaks that are observed
in the zinc-blende structure but not seen in the diamond structure. There is diffuse scattering
associated with these weak peaks also, which has the form

ID( EQ) =
[
(fA − fC)

2

(
1V

Va

)(
1 + ν

3(1− ν)
)( EQ · q̂

q

)
+ (fA − fB)

]2

(16)

and disappears completely when all the scattering factors are set equal to unity. Note that
the diffuse scattering in (15) is associated with strong Bragg peaks whose intensity scales as
(fA+fC)2, whereas the diffuse scattering in (16) is associated with weaker Bragg peaks whose
intensity scales as(fA − fC)2. The Huang part of the diffuse scattering scales quadratically
with the atomic form factor in the same way as the Bragg peak with which it is associated. So
if one is strong so is the other, and vice versa.

4. Displacement field

For defects in an elastically isotropic medium, the substitution for the host atom with an
impurity atom is accompanied by the action of hydrostatic pressure on the surface of the
impurity atom due to the size mismatch of host and impurity atoms, in the continuum viewpoint.
This results in the appearance of an inverse-square-type displacement field in the matrix as
sketched in figure 1(b) decreasing as 1/r2 with the distancer between the defect and the matrix
site, as discussed in the previous section.

There is a question as to the proper choice of the length change1R or equivalently the
volume change1V associated with the defect that should be used in equation (10). This
forms thebridge between the continuum theory and the lattice simulations. One possible
choice would be to take the volume associated with the GaAs bond lengtha2 as 4πa3

2/3 so
that

1V = 4π(a3
1 − a3

2)/3= 14.2 Å3.

This was too large when compared with simulations results.
The proper procedure [2, 3] is to take the Wigner–Seitz cell surrounding the Ga ion, and

ignoring the As ions, to give a volume of 16a3
2/3
√

3, and hence

1V = 16(a3
1 − a3

2)/3
√

3= 10.4 Å3

which gives a better fit to the lattice simulation data. Actually the best fit was obtained with
the linearized version of this result

1V = 16a2
2(a1− a2)/

√
3= 9.71 Å3

which is what we use in equation (10) and is shown as the curves in figures 2(a) and 3.
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(a)

(b)

Figure 2. Showing (a) the radialU = Eu · r̂ and (b) the tangentialT = |Eu× r̂| parts of the
displacement field calculated by direct simulation over the lattice (solid dots) and calculated from
the continuum theory given in equation (10) for a single defect using the continuum approach
(curve). Note that the tangential displacements are ten times smaller and predicted to be zero by
the continuum theory. The distancer is measured in ångströms.

Figure 3. Showing an enlargement from figure 2(a) of the radialU = Eu · r̂ part of the displace-
ment field calculated by direct simulation over the lattice (solid dots) and calculated from the
continuum theory given in equation (10) for a single defect using the continuum approach (curve).
The distancer is measured in ångströms.

To check the displacement field caused by In atoms in a GaAs matrix with the ratio
between bond-bending and bond-stretching force constantsβ/α corresponding to an isotropic
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elastic medium, we have simulated the displacement field for such a crystal with one In atom
substituted for a Ga atom in a sample size of 40× 40× 40 cells with 512 000 atoms. The
changes of the radial and tangential parts of the displacement field with the distance from the
impurity atoms are shown in figures 2(a) and 2(b). We have verified that the displacement
field falls off as aninverse squarelaw at large distances from the single defect as predicted by
continuum theory, but that there are significant deviationscloseto the defect. The theoretical
curve corresponding to equation (10) is shown by a solid curve, the results of simulations are
represented by dots. In figure 3, we show an enlargement of figure 2(a) which shows that there
are small but real fluctuations away from the inverse square behaviour at all distances.

It is seen that the tangential part of the displacement field isten times smallerthan the
radial component, so we can use this approximation and consider the displacement field created
by In impurity atoms as being of an inverse square type. The deviation of the displacement
field from a pure inverse square behaviour in the several nearest neighbours will influence the
intensity distribution at large distances from the reciprocal-lattice points, while in the vicinity
of a reciprocal-lattice point, the scattered intensity is caused mainly by the atoms relatively
distant from the defect (where the inverse square type of displacement field is good, on average).

The deviations from the inverse square law shown in figure 2(a) and 3 are real and not
due to any numerical noise or error, as we have checked this with different supercell sizes,
and obtained identical results. These deviations appear to cancel out in the Huang scattering
almost completely, as seen in the next section.

5. Diffuse scattering

In this section, we give results for the diffuse scattering associated with a single In defect in a
GaAs host, with all the force constantsα andβ the same and chosen to give isotropic elastic
behaviour as described previously. All of the lattice simulations are over a 512 000-atom
supercell and the continuum calculations have been described in section 3.

(a) (b)

Figure 4. Contour maps of the diffuse scattering, from lattice simulations, for a single In defect
in GaAs with isotropic elastic properties. In (a) the contours are for equal scattering amplitudes
fA = fB = fC = 1 and in (b) they are for different scattering amplitudesfA = 31,fB = 49, and
fC = 33.
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Again we must select the appropriate value of the relative volume change1V/Va for use
in equation (13). From the previous discussion, this is associated with the change in the natural
bond lengths of InAs and GaAs and hence1V/Va = (a1/a2)

3 − 1 = 0.231. As before we
find that the linear result,1V/Va = 3[(a1/a2) − 1] = 0.215, gives a slightly better fit when
used in equation (13) to fit the lattice simulations of the diffuse scattering as shown in figure 4
(and figures 6 and 7—see later).

To get an overview of the scattering, we show in figure 4 a contour map of curves of equal
intensity for the diffuse scattering. These were calculated from the lattice simulation, using the

(a)

(b)

Figure 5. Showing the spatial distribution of the total scattered intensity,I , from the lattice
simulations, for a single In defect in GaAs with isotropic elastic constants with (a) equal scattering
amplitudesfA = fB = fC = 1 and (b) different scattering amplitudesfA = 31, fB = 49, and
fC = 33. The intensity is normalized to(fA + fC)

2/4.
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relaxed atomic coordinates and equation (4). These contours are calculated for the (001) plane
(qz = 0) for the case in which the change in scattering amplitude is neglected (1f = 0) (a) and
for different scattering amplitudes with1f 6= 0 (b). Thedouble-dropshapes around the (200),
(020), (110), and (220) reciprocal-lattice points are aligned so that the axes pointtowardsthe
origin. Slight anisotropy of the contours is caused byEQ being larger on the distant side of the
reflection. It can be seen from figure 4(b) that the difference of scattering amplitudes switches
the anisotropy of the intensity distributions in the vicinity of reciprocal-lattice points, while at
large distances the scattering is almost the same. Notice that the smaller Bragg peaks that scale
as(fA − fC)2 together with their associated Huang scattering are just visible in figure 4(b).
The wavevectorEQ is in units of 4π/a2 in figures 4–10.

In figure 5 we show a different representation of the same results as in figure 4, but also
include the Bragg peaks this time. It can be seen that additional smaller Bragg peaks occur when
the scattering amplitudes are not the same, as this corresponds to the difference between the
zinc-blende and diamond structures. In particular, we see the appearance of additional Bragg

(a)

(b)

Figure 6. Showing the profile of the Huang scattering intensity from a single In defect in GaAs
with isotropic elastic constants, for the (200) reflection along the [100] direction for different values
of qy which is perpendicular to thex-direction. The curves are from the continuum theory and the
corresponding symbols are from the lattice simulation. The values ofqy are (0) 0, (1) 0.0125G,
(2) 0.025G, and (3) 0.0375G, whereG = 4π/a, and the nearest-neighbour bond length is

√
3a2/4.

The top panel (a) shows the case for equal scatteringfA = fB = fC = 1, and the bottom panel
(b) that for different scattering amplitudesfA = 31, fB = 49, andfC = 33. The intensity is
normalized to(fA + fC)

2/4.
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peaks in the positions corresponding to the reflections (100), (010), (210), (120). Notice that
the Huang scattering around the large peaks in figure 5(b) is substantial as predicted by (15)
and extremely weak around the smaller Bragg peaks as predicted by (16).

In figure 6, we show the results of the direct lattice simulations (solid symbols) and the
continuum result (curves) for the (200) strong Bragg reflection for different values ofqy along
the direction [100], which show remarkably good agreement with each other, not only for the
section passing through the centre of the reflection but also for a section passing through the
side parts of it. We observe the decrease of the intensity in the central part of these distributions
for a side section typical for thedouble-dropshape of the reflection. The anisotropy of the
profiles is different for the case (a) with1f = 0 and compared with equation (14), and the
case (b) with1f 6= 0 and compared with equation (15). The short-wavelength concentration
waves, that are very different in the lattice and continuum theories, are only important when
the scattering is weak out in the wings of the Huang scattering, and so in fact are seen to be
largely irrelevant. Nevertheless it was not clear to us before doing this study that the continuum
approach would be so spectacularly good.

In figure 7, we show that the Huang scattering increases as the scattering vectorEQ increases
in a quadratic way asQ2 for both the strong and weak series of Bragg peaks separately. The
diffuse scattering associated with the strong Bragg peaks is compared to the continuum theory
in equation (15) and that associated with the weak Bragg peaks is compared to the continuum
theory in equation (16).

The agreement of the lattice simulations with the continuum approximation is very good
in all cases. Finally in figure 8, we show an enlarged picture of the diffuse scattering associated
with one of the weak Bragg peaks in figure 7, which shows some small deviations from the
continuum theory. This is not unexpected as the scattering is very weak and continuum theory
is after all only an approximation to the lattice.

The second non-divergent terms in equations (15) and (16) do have small but observable
effects on the intensity in the wings of the Huang scattering as can be seen in figures 4–8.
These terms can be thought of as providing a background scattering everywhere. However,
because they add as amplitudes and not as intensities, they can cause an asymmetry in the
wings of the Huang scattering as shown for example in figure 8.

Figure 7. A panoramic view of the diffuse intensity profile along direction [100] for higher orders
of the reflection (200) for a single In defect in GaAs with isotropic elastic constants and scattering
amplitudesfA = 31,fB = 49, andfC = 50. We have madefC larger to emphasize the diffuse
scattering around the smaller peaks. The curves are from the continuum theory and the solid circles
are from the lattice simulation. The intensity is normalized to(fA + fC)

2/4. The curves alternate:
strong, weak,. . ..
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Figure 8. An expanded view of the diffuse scattering associated with one of the weak Bragg peaks
in figure 7. The intensity is normalized to(fA + fC)

2/4.

6. Cubic elastic constants

Real crystals are not isotropic. The extent of the matrix anisotropy for cubic crystals can
be characterized with the anisotropy parameterξ = (c11− c12− 2c44)/c44 depending on the
elastic modulic11, c12, andc44. For an isotropic medium,ξ = 0. Anisotropy parametersξ of
semiconductors with the zinc-blende structure are shown in the table 1. It can be seen that most
have anegativeanisotropy parameter in the interval−0.6 > ξ > −1.2. For the Kirkwood
model, the anisotropy parameter is given byξ = (16/9)(β/α) − 1, depending only on the
ratio β/α. The parametersα andβ determined fromc11 andc12 in the Kirkwood model give
a slightly different value ofc44, for GaAs, and take the anisotropy parameterξ different from
−1 which would correspond toβ = 0. Note that values of the anisotropy parameterξ < −1
are not attainable in the Kirkwood model, which may be a significant deficiency, especially
in the present study where the Huang scattering is dominated by long wavelengths and hence
depends almost exclusively on the elastic constants. However, as our aim in this paper is to
check the continuum approximation for a given set of elastic constants, rather than to describe
real materials accurately, this is not much of a concern here.

The parameters used in the continuum calculations arec11 = 11.9, c12 = 5.38,
c44 = 4.712 (in units of 1011 dyn cm−2) which corresponds to an anisotropy parameter
ξ = −0.616, with force constantsα = 128.1 N m−1, β = 27.64 N m−1 which gives the
ratio β/α = 0.216. The force constant parametersα, β were calculated from the elastic
moduli c11 andc12. The absolute value of these force constants is not important, rather only
the ratioβ/α or equivalently the anisotropy parameterξ .

Matrix anisotropy changes the continuum equation for Huang scattering intensity. It is
additionally influenced by elastic constants and the value of the anisotropy parameterξ for the
matrix. For a single defect in the case in which all of the amplitude factorsfi in (4) are equal
to unity, the Huang scattering intensity (13) becomes

IH ( EQ) =
(
1V

Va

)2(
c11 + 2c12

3D(n̂)

)2
Q2

q2
A2(m̂, n̂) (17)

wherem̂ = EQ/Q, n̂ = Eq/q, and

A(m̂, n̂) = mxnx(1 + ξn2
y)(1 + ξn2

z) +myny(1 + ξn2
z)(1 + ξn2

x) +mznz(1 + ξn2
x)(1 + ξn2

y)

(18)

D(n̂) = c11 + ξ(c11 + c12)(n
2
xn

2
y + n2

xn
2
z + n2

yn
2
z) + ξ2(c11 + 2c12 + c44)n

2
xn

2
yn

2
z . (19)



Lattice and continuum theories of Huang scattering 3087

Table 1. The elastic constantsc11, c12, andc44 (in units of 1011 dyn cm−2) from reference [18] and
the dimensionless anisotropy parameterξ are listed for crystals with the diamond and zinc-blende
structures. The force constantsα andβ (in N m−1) for the Kirkwood model are also given.

c11 c12 c44 ξ α β

Diamond structure

C 10.76 1.25 5.77−0.35 47.3 25.5
Si 16.58 5.78 8.00−0.65 153.0 44.0
Ge 12.85 4.83 6.68−0.80 127.3 34.1

Zinc-blende structure

AlP 14.59 6.71 3.69 + 0.14 153.0 32.3
18.83 8.44 4.24 + 0.45 195.1 42.6

AlAs 12.02 5.70 5.8 −0.93 132.6 26.8
AlSb 8.77 4.34 4.08−0.91 107.1 20.4
GaP 14.05 6.20 7.03−0.88 144.2 32.1
GaAs 11.90 5.38 5.95−0.90 128.1 27.6
GaSb 8.83 4.02 4.32−0.89 102.9 22.0
InP 10.11 5.61 4.56−1.01 125.2 19.8
InAs 8.33 4.53 3.96−1.04 105.3 17.3
InSb 6.67 3.65 3.02−1.00 90.5 14.7
ZnS 9.81 6.27 4.48−1.21 120.9 14.4
ZnSe 8.59 5.06 4.06−1.13 106.0 15.0
ZnTe 7.13 4.07 3.12−1.02 93.20 14.0
CdS 8.47 5.45 1.58−0.09 112.7 13.2
CdSe 7.49 4.61 1.32 + 0.19 101.1 13.1
CdTe 5.33 3.65 2.04−1.18 81.9 8.17
HgSe 6.19 4.42 2.23−1.20 91.5 8.08
HgTe 5.36 3.66 2.12−1.20 81.9 8.24

In the case in which the scattering factorsfi in (4) arenot all set equal, the intensity of
the diffuse scattering associated with main Bragg peaks (15) is given by

ID( EQ) =
[
(fA + fC)

2

(
1V

Va

)(
c11 + 2c12

3D(n̂)

)(
Q

q

)
A(m̂, n̂) + (fA − fB)

]2

. (20)

As in the case of isotropic elastic constants, the latter becomes the Huang scatteringIH ( EQ)
as given in (17) when all of the atomic scattering factorsfi are set equal to unity. The diffuse
scattering intensity around the additional extra peaks (16) related to the non-zero difference
between the A and C atomic scattering factorsfA 6= fC in the case of cubic lattice constants
of the matrix now is described by

ID( EQ) =
[
(fA − fC)

2

(
1V

Va

)(
c11 + 2c12

3D(n̂)

)(
Q

q

)
A(m̂, n̂) + (fA − fB)

]2

. (21)

Matrix anisotropy changes the shape of isodiffuse curves from simple spheres to a more
complicated shape, while still maintaining the characteristicdouble-dropshape. Contour maps
for this case are analogous to those shown in figure 4, but we observe small changes in the
shape of the isodiffuse curves. In figures 9(a) and 9(b), we show the results of the direct
lattice simulations and the continuum calculation for the (200) strong Bragg reflection for
different sections along the [100] direction. These profiles are analogous to those shown in
figure 6. The intensity of the diffuse scattering is higher than in the isotropic case, but still the
results of simulation and from continuum theory described by equations (17)–(21) again show
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(a)

(b)

Figure 9. Showing the profile of the Huang scattering intensity from a single In defect in GaAs
with cubic elastic constantsc11 = 11.9, c12 = 5.38, c44 = 4.71 (in units of 1011 dyn cm−2),
α = 128.1 N m−1, β = 27.64 N m−1, β/α = 0.216,ξ = −0.616, for the (200) reflection along
the [100] direction for different values ofqy which is perpendicular to thex-direction. The curves
are from the continuum theory and the corresponding symbols are from the lattice simulation. The
values ofqy are (0) 0, (1) 0.0125G, (2) 0.025G, and (3) 0.0375G, whereG = 4π/a2, and the
nearest-neighbour bond length is

√
3a2/4. The top panel (a) shows the case for equal scattering

fA = fB = fC = 1, and the bottom panel (b) that for different scattering amplitudesfA = 31,
fB = 49, andfC = 33. The intensity is normalized to(fA + fC)

2/4.

remarkably good agreement with each other. We also checked the coincidence of continuum
and lattice simulation results for additional weak peaks (figure 10). It is not quite so good, but
still very satisfactory.

7. Discussion

The presence of isolated defects in a semiconductor crystal results in the appearance of
intensive Huang scattering around the reciprocal-lattice points. The intensity distribution of
Huang scattering for defects in these cubic crystals, with isotropic elastic constants, behaves
as ( EQ · Eq)2/q4, where EQ is the scattering wavevector andEq = EQ − EG is measured from
the reciprocal-lattice pointEG of interest. The diffuse scattering is dominated by the Huang
component and results in thedouble-dropshape of the isodiffuse surfaces. Results of a
continuumtheory of Huang scattering in the limit of very low concentration coincide with
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Figure 10. An expanded view of the diffuse scattering associated with one of the weak Bragg
peaks for crystals with cubic elastic constantsc11 = 11.9, c12 = 5.38, c44 = 4.712 (in units of
1011 dyn cm−2), α = 128.1 N m−1, β = 27.64 N m−1, β/α = 0.216,ξ = −0.616. The intensity
is normalized to(fA + fC)

2/4.

those for a relaxedlattice model studied here. Huang scattering is expected to be dominated
by long wavelengths near the peaks in the scattering, so continuum theory should provide a
good description of the scattered intensity. We show that the strong, weak Bragg peaks have
strong, weak diffuse scattering associated with them. Matrix anisotropy changes the shape
of the isodiffuse curves from simple spheres to more complicated forms, but thedouble-drop
characteristic is still retained.

It is a bit of a surprise that continuum theory also does rather well in the wings of the
Huang scattering, where shorter wavelengths are important, but this is because the scattering
is very weak and featureless. The displacement field associated with a single defect does
fall off as an inverse square law on average, but with some deviations about the average due
to the lattice structure. As we have shown, there is a very good agreement between lattice
and continuum results, and it will be possible now to use continuum theory for calculations of
diffuse scattering with considerable confidence. This is the first of a series of studies that we are
undertaking to evaluate the continuum approximation to diffuse x-ray and neutron scattering
in semiconductor alloys. Future work will consider higher concentrations of defects and the
effects of differences in the force constants between the host and the impurities.
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